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The water-soluble fraction of aviation jet fuels is examined using
solid-phase extraction and solid-phase microextraction. Gas
chromatographic profiles of solid-phase extracts and solid-phase
microextracts of the water-soluble fraction of kerosene- and
nonkerosene-based jet fuels reveal that each jet fuel possesses a
unique profile. Pattern recognition analysis reveals fingerprint
patterns within the data characteristic of fuel type. By using a novel
genetic algorithm (GA) that emulates human pattern recognition
through machine learning, it is possible to identify features
characteristic of the chromatographic profile of each fuel class. The
pattern recognition GA identifies a set of features that optimize the
separation of the fuel classes in a plot of the two largest principal
components of the data. Because principal components maximize
variance, the bulk of the information encoded by the selected
features is primarily about the differences between the fuel classes.

Introduction

Subsurface fuel spills and leaks represent the largest and most
widespread cause of ground-water contamination in the United
States. The Environmental Protection Agency has identified
approximately 1.5 million underground storage tank sites in the
continental U.S. in which fuels have spilled or leaked into the
environment. Such spills and leaks on military property often
involve aviation turbine fuels. Aviation fuels used by the Air
Force, Army, and Navy include JP-4 (formally used by the Air
Force and Army for flight operations within the continental
U.S.), JP-5 (used by the Navy aboard ships), JPTS (used by the Air
Force for special high-altitude flights), and JP-8 (which has
replaced JP-4 as the standard turbine aviation fuel). The primary
civilian aviation fuel used in the United States is Jet-A.

In a previously published study, Mayfield and Henley (1) char-
acterized the water-soluble components of jet fuels using gas
chromatography (GC). The water-soluble fraction consisted pri-
marily of alkyl derivatives of benzene and naphthalene. These

analyses were performed by equilibrating pure water with the
fuel, passing the aqueous phase through solid-phase extraction
(SPE) cartridges loaded with C-18 modified silica, and then col-
lecting the extracted organics with an organic solvent to yield a
sample amenable to analysis by GC. The potential to identify the
various jet-fuel classes by applying pattern recognition tech-
niques to the GC profiles of the water-soluble fraction of non-
kerosene-based jet fuels has been previously demonstrated (2).

In this study, pattern recognition techniques were used to type
the gas chromatograms of the water-soluble fraction of kerosene-
based jet fuels. The test data consisted of 133 gas chromatograms
of solid-phase extracts of the water-soluble hydrocarbons col-
lected from six different types of aviation turbine fuels (JP-4, Jet-
A, JP-7, JPTS, JP-5, and AVGAS) and 108 gas chromatograms of
solid-phase microextracts of the water-soluble hydrocarbons col-
lected from four different types of kerosene-based jet fuels (Jet-A,
JP-5, JP-8, and JPTS). This study, which is a logical extension of
earlier efforts (3–7), was undertaken because of the difficulty in
classifying the gas chromatograms of Jet-A, JP-5, JP-8, and JPTS
fuels because of the similarity in their compositions.

Experimental

Neat samples of JP-4, Jet-A, JP-7, JPTS, JP-5, JP-8, and
100/130-octane aviation gasoline (AVGAS) were obtained from
Wright Patterson Air Force Base (Dayton, OH) and Mukilteo
Energy Management Laboratories (Mukilteo, WA). These fuel
samples were splits from regular quality-control standards used
by the two laboratories to verify the authenticity of the manufac-
turer’s claims. The control standards constituted a representa-
tive sampling of the fuels.

The water-soluble fraction was obtained by equilibrating 2 mL
of a neat jet fuel with 250mL of deionized water at ambient tem-
perature while stirring gently for 12 h in a vessel designed by
Burris and McIntyre (8) to maximize surface contact between
fuel and water while avoiding mixing. Following equilibration,
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several milliliters of water was discharged from the vessel to
ensure that the delivery tube was clear of fuel, and two 25-mL
aliquots of the water phase were delivered into gas-tight syringes
equipped with Luer-lock open shut valves. Thus, two 25-mL
water samples could be prepared from a single fuel sample.

SPE and solid-phase microextraction (SPME) were used to
characterize the 25-mL water samples containing the dissolved
hydrocarbons. For the SPE procedure, each 25-mL aliquot was
spiked with a solution of d10-ethylbenzene (98% atom purity,
1 µL/mL) (New England Nuclear, Boston, MA) in methanol
(HPLC grade) (Fisher, Pittsburgh, PA) and then forced through a
C-18 Sep-pak (Millipore Corporation, Bedford, MA) SPE car-
tridge. The d10-ethylbenzene was used as an internal retention
standard. Prior to use, each C-18 Sep-pak was pretreated using
the procedure recommended by Millipore, which involved run-
ning 2 mL of methanol through the cartridge followed by 5 mL
of high-purity water.

After forcing the 25-mL water sample through the C-18 Sep-
pak, the cartridge was partially dried with a 5-mL slug of air and
extracted with 1 mL of carbon disulfide (glass distilled) (Aldrich,
Milwaukee, WI). A 1-µL aliquot of each carbon disulfide extract
was then injected onto a 60-m × 0.25-mm fused-silica capillary
column containing a 0.25-µm bonded polyethylene glycol sta-
tionary phase (DBWAX, J&W Scientific, Folsom, CA), which was
temperature programmed from40°C to 200°C at 50°C perminute
with an initial isothermal hold of 4 min. A splitless injection tech-
nique was used with the injector port temperature set at 250°C.
Gas chromatograms of the carbon disulfide extract were obtained

using a Hewlett Packard (Palo Alto, CA) 5987 GC–mass spectrom-
eter (MS) with an HP-1000-F minicomputer running the RTE-
6/VM operating system and RTE-6/VM GUMS Data System
software. Hewlett-Packard-supplied software was used to subtract
the mass 76 ion chromatogram from the total ion chromatogram
of each sample in order to minimize the effect of carbon disulfide
solvent on the sample chromatogram. The operating conditions of
the MS are listed in Table I. Figure 1 shows GC profiles (i.e., total
ion chromatograms) representative of the solid-phase extracts of
JP-4, Jet-A, JP-5, and JPTS. The SPE data set, which consisted of
133 gas chromatograms, is described in Table II.

For the SPME procedure, each sample was placed in 40-mL
VOA vials (Fisher Scientific) with one-hole screw caps and
Teflon-faced septa (we did not add d10-ethylbenzene to the sam-
ples in the SPME study because our experience with SPE demon-
strated that its presence in the sample as a retention standard
was unnecessary). Prior to the introduction of the sample, a
microstirring bar was placed in a vial to permit the sample to be
stirred by a magnetic stirrer during the SPME sampling period,
which was 15 min. The stirring rate was reasonably high but not
high enough to produce a vortex. In a previous study (9), we
found that the actual rate of stirring was not a critical parameter.
In retrospect, this result is not surprising because the purpose of
stirring was to replenish the fiber-soluble components in the
headspace, which were being depleted by adsorption into the
SPME during sampling. We also had found that a 15-min sam-
pling of the headspace was sufficient time to obtain a representa-
tive sampling of the water-soluble compounds present in a jet
fuel. In both the previous and current study, we used a 100µ poly-
methylsiloxane fiber (SUPELCO, Bellefonte, PA) to sample the
headspace.

The SPME fiber was preconditioned by first inserting it into
the injector port of the GC for approximately 30 min. The
injector port was set at 250°C. We then performed a blank run
using distilled water as the sample to assess the cleanliness of the
fiber. In a blank run the operating conditions for the GC and MS
were the same as for an actual sample. If there were chromato-

graphic peaks present, the preconditioning
process was repeated until the blank run
did not yield any chromatographic peaks.

GC profiles of the SPME microextracts
were obtained using a Hewlett Packard
5890 GC equipped with a 5970B mass-
selective detector, a split/splitless injection
port, and a 30-m × 0.25-mm fused-silica
capillary column with 1-µm bonded and
cross-linked 5% phenyl-substituted poly-
methylsiloxane (DB-5, J&W Scientific).
The GC oven was temperature pro-
grammed from –10°C with an initial
isothermal hold of 3 min to 250°C at a rate
of 10°C/min followed by a 6-min final
isothermal hold period. A splitless injec-
tion technique was used with the injector
port temperature set at 250°C. The purge
delay time for the fiber was 1 min, and the
fiber was left in the injection port for 10
min to ensure no carry over between runs.

Table I. Mass-Spectral Conditions

Mass scan range 35–350 daltons
Scan cycle period 0.66 s
A/D samples per axis point 4
Scan delay 6.5 min
Ion storage threshold 2
Electron multiplier voltage 1400 V

Figure 1. GC profiles of water samples contaminated by jet fuels: (A) JP-4, (B) JP-5, (C) Jet-A, (D) JPTS, (E) JP-7,
and (F) AVGAS. SPE was used to sample the dissolved hydrocarbons. For each gas chromatogram, the y-axis
corresponds with the total ion counts and the x-axis corresponds with time (min). Reprinted from reference 12
with the kind permission of Elsevier.
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The injector port was fitted with a standard split/splitless liner.
Subsequent studies have shown the advantage of using an SPME
liner, but this product was not available at the time of this study.
With regard to fiber aging, we did not observe any change in the
GC profiles of the fuels over time that could be correlated with
fiber aging. Fibers tended to be damaged by mishandling before
reaching their lifetime.

Operating conditions of the mass-selective detector were sim-
ilar to those in the SPE study except that no scan delay was used,
the ion storage threshold was 200, and the electron multiplier
voltage was 2000 V. GC profiles representative of solid-phase
microextracts of Jet-A, JPTS, JP-5, and JP-8 fuels are shown in
Figure 2. The SPME data set consisting of 108 gas chro-
matograms is summarized in Table III.

Data preprocessing
The gas chromatograms of the dissolved hydrocarbons were

peak matched using a FORTRAN program called SETUP (10)
that divided each gas chromatogram into intervals defined by so-
calledmajor peaks (i.e., peaks that were present in all of the chro-
matograms). The major peaks were peak matched using

mass-spectral data acquired during the runs. Retention-time off-
sets were then computed for the major peaks in each individual
chromatogram. These offsets were the differences in retention
time between the marker peaks in the reference chromatogram
(which is selected by the user) and the chromatogram’s own
marker peaks. The retention time offsets were 0.02 to 0.03 min.
Finally, all of the peaks between the reference peakmarkers were
adjusted by linear interpolation. This ensured that all GC peaks
were expressed on the same time scale rotted on the majors (a
major or marker peak was one that was easily recognizable in all
gas chromatograms).

In order to standardize the retention time of the peaks eluting
prior to the first major peak, it was necessary to use scaling fac-
tors developed for the first pair of major peaks. Similarly, peaks
eluting after the last major peak used a set of scaling factors
developed for the final pair of major peaks. A template of unique
peaks for the GC data was then constructed, with the peaks
arranged according to their retention time. A preliminary data
vector was generated for each GC profile by matching it against
the template. If the peak was present, its area from the integra-
tion report was assigned to the corresponding element of the
vector. A peak not present was assigned a value of zero. For peak
matching, specifying a tolerance window for acceptable reten-
tion-time differences is generrally required. Thus, peaks were
matched provided that differences in adjusted retention times
fell within a specified tolerance window, which was set at 0.02
min. SETUP also computed the frequency of each feature. In
other words, the number of times a particular peak was found to
have a nonzero occurrence was computed. Features were deleted
if they were below a user-specified number of nonzero occur-
rences, which was set equal to 10% of the total number of sam-
ples in the training set. The peak-matching procedure yielded a
final cumulative reference file containing 48 peaks for the SPE
data set and 73 peaks for the SPME data set.

Pattern recognition analysis
For pattern recognition analysis, each gas chromatogram was

initially represented by a 48-dimensional data vector (SPE data
set) or a 73-dimensional data vector (SPME data set, xj = (x1, x2,
x3, … xj, … xp), where xj is the area of the jth peak). Each data
vector was also normalized to constant sum using the total inte-
grated peak area. The two GC data sets were analyzed using a
genetic algorithm (GA) developed for pattern recognition

(11–14) implemented in Matlab (Math Works,
Inc., Natick, MA). The pattern recognition GA
identified a set of features that optimized the sep-
aration of the fuel classes in a plot of the two
largest principal components of the data. Because
principal components maximize variance, the
bulk of the information encoded by these features
is primarily about differences between the classes
in the data set. Furthermore, the principal com-
ponent plot functions as an embedded informa-
tion filter. Sets of GC peaks were selected based on
their principal component plots. A good principal
component plot can only be generated using fea-
tures whose variance or information is primarily
about differences between the fuel classes. Thus,

Figure 2. GC profiles of water samples contaminated by jet fuels: (A) Jet-A, (B) JPTS, (C) JP-8, and (D)
JP-5. SPME was used to sample the dissolved hydrocarbons. For each chromatogram, the y-axis corre-
sponds with the total ion counts and the x-axis corresponds with time (min).
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Table II. SPE Data Set

Fuel type No. of fuel samples No. of chromatograms

JP-4 20 27
Jet-A 27 54
JP-7 4 8
JPTS 10 20
JP-5 9 18
AVGAS 6 6
Total 76 133

Table III. SPME Data Set

Fuel type No. of fuel samples No. of chromatograms

Jet-A 21 42
JPTS 10 13
JP-5 10 20
JP-8 20 33
Total 61 108
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principal component analysis (PCA) limits the search to these
types of feature subsets, thereby significantly reducing the size of
the search space.

A block diagram of the pattern recognition GA is shown in
Figure 3. The pattern recognition GA differed from conventional
GAs in several important respects. First, both adults and children
were used to develop the new solutions. Potential solutions (i.e.,
feature subsets) were placed in two columns. In the first column,
the solutions were ordered from best to worst on the basis of
their fitness. In the second column, a copy of the same popula-
tion (i.e., feature subsets) was randomly ordered with respect to
fitness. The first row of the first column was then combined with
the first row of the second column to yield new and potentially
better solutions to the pattern recognition problem. Because the
best feature subsets were always being used, each new genera-
tion was expected to give better results than the previous gener-
ation. However, each chromosome or potential solution had a
chance of being selected (second column). This ensured that a
significant degree of diversity was maintained during the search
for a better solution. Typically, we set the selection pressure at
0.5 so that the top half of the ordered population was mated with
strings or chromosomes from the top half of the so-called
random population. Two new strings or potential solutions were
generated for each pair of strings selected.

Second, the reproduction operator in the pattern recognition
GA used a variation of three-point crossover to combine the
binary strings to form new chromosomes. As in the case of
simple three-point crossover, the length of each new string or
solution was the same as the dimensionality of the data.
However, the crossover operator used by the pattern recognition
GAwas not compelled to preserve order among exchanged string
fragments. This safeguarded the loss of information or features
in the population (see Figure 4). This variation of three-point
crossover was also useful in searching for good string arrange-
ments. When it is supposed that the current population has bad
ordering, in which features with a high synergism are spaced at
great distances, simple crossover would probably destroy these
important allele packets. However, there would be a chance to
obtain good ordering if a crossover operator was used with a
reordering algorithm embedded in it.

Third, the fitness function of the pattern recognition GA emu-
lated human pattern recognition via machine learning to score
the feature subsets. In order to track and score the principal com-
ponent plots, class and sample weights (which are an integral part
of the fitness function) were computed (see equations 1 and 2).
Class weights added up to 100, whereas the sample weights in a

class added up to a value equal to the corresponding class weight.

CW(c)CW(c) = 100 ———— Eq. 1
∑CW(c)
c

SW(s)SW(s) = CW(c) ———— Eq. 2
∑SWc(s)s∈c

Each principal component plot that was generated for each
feature subset after it was extracted from its chromosome was
scored using the K-nearest neighbor (K-NN) classification algo-
rithm (15). For a given data point in the principal component
plot, Euclidean distances were computed between it and every
other point. These distances were arranged from smallest to
largest. A poll was then taken of the point’s K-NNs. For the most
rigorous classification, k equaled the number of samples in the
class to which the point belonged. The number of nearest neigh-
bors with the same class label as the sample point in question,
the so-called sample hit count (SHC), was computed (0 ≤ SHC(s)
≤ Kc). Scoring the principal component plot (see equation 3)
became a simple matter.

1F(d) = ∑∑—— × SHC(s) × SW(s) Eq. 3
c s∈c KC

In order to understand the scoring of a principal component
plot, a data set with two classes should be hypothetically consid-
ered (class 1 has 10 samples and class 2 has 20 samples). At gen-
eration 0, each class is assigned equal weights, and the samples
in a given class has the same weight. Thus, each sample in class
1 has a sample weight of 5, whereas each sample in class 2 has a
weight of 2.5. It is supposed that a sample from class 1 has as its
nearest neighbors seven class 1 samples in a principal compo-
nent plot developed from a particular feature subset. With this in
mind, SHC/K = 0.7 and (SHC/K)*SW = 0.7*5, which equals 3.5.
By summing (SHC/Kc)*SW for each sample, each principal com-
ponent plot can be scored.

Fourth, the fitness function of the GA was able to focus on
samples or classes (or both) that were difficult to classify by
changing or boosting their weights over successive generations.
In order for boosting, the sample hit rate (SHR) was computed.
The SHR was the mean value of SHC/Kc over all feature subsets
produced in a particular generation:

1 ø SHCi(s)SHR(s) = — ∑———— Eq. 4
ø i=1 K

Boosting was then performed in three stages.
First, the class hit rate (CHR) was computed.
CHR was the average SHR for all samples in a
class.

CHRg(c) = AVG(SHRg(s):∀s∈c) Eq. 5

Classes with a low CHR were weighted more
heavily than classes whose samples scored well.
Second, class and sample weights were adjusted
using a perceptron. The user must set the
momentum, P.Figure 3. A block diagram of the GA used for pattern recognition analysis.
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CWg+1(s) = CWg(s) + P(1 – CHRg(s)) Eq. 6

SWg+1(s) = SWg(s) + P(1 – SHRg(s)) Eq. 7

Third, after a certain number of generations, the class weights
will not change. Equation 6 was turned off and the GA focused
exclusively on the troublesome samples via equation 7.

During each generation, class and sample weights were
updated using the class and SHRs from the previous generation
(g + 1 was the current generation, whereas g was the previous
generation). The aforementioned procedure, which involved
evaluation, reproduction, and adjustment of internal parameters

(i.e., boosting of the potential solutions), was repeated until a
specified number of generations were executed or a feasible solu-
tion was found.

The advantages of using the pattern recognition GA for feature
selection were three-fold. First, chance classification would not
be a problem because the bulk of the variance or information
content of the feature subset selected was primarily about the
class membership problem of interest. Second, features that
contain discriminatory information about a particular classifica-
tion problem would be expected to be correlated, which was why
feature selection methods based on PCA were ideally suited for
carrying out feature selection. Third, the PCA routine of the fit-
ness function was able to dramatically reduce the size of the
search space because it could correctly assess the true dimen-
sionality of the data, ensuring that only those regions of the solu-
tion space with information about the problem of interest were
investigated.

Results and Discussion

The first step in the study was to apply PCA to the data (16).
PCA is a method for transforming the original measurement
variables into new, uncorrelated variables called principal com-
ponents. Each principal component was a linear combination of
the original measurement variables. Using this procedure was
analogous to finding a new coordinate system that is better at
conveying information present in the data than axes defined by
the original measurement variables. The new coordinate system
was linked to variation in the data. Often, only two or three prin-
cipal components were necessary to explain all of the informa-
tion present in a data set that had a large number of interrelated
measurement variables. Thus, PCA could be applied to high-
dimensional data in order to affect dimensionality reduction,
identify and display structure, classify samples, or identify out-
liers.

Figure 5 shows a principal component map
developed from the 48 GC peaks obtained from
the 133 SPE gas chromatograms. The map of the
two largest principal components of the data
accounted for 65% of the total cumulative vari-
ance. Each gas chromatogram was represented
by a point in the principal component map. JP-4,
AVGAS, and JP-7 were well-separated from one
another and from the gas chromatograms of Jet-
A, JP-5, and JPTS in the principal component
plot, suggesting that information characteristic
of fuel type was present in the gas chro-
matograms of the water solubles. The overlap of
JP-5, Jet-A, and JPTS fuel samples in the principal
component map suggested that gas chro-
matograms of these fuel materials shared a
common set of attributes, which is not surprising
because of the similarity in their physical and
chemical properties (e.g., flash point, freezing
point, vapor pressure, and distillation curve) (17).
Mayfield and Henley (1) observed that gas chro-

Figure 4. Crossover operator employed in the pattern recognition GA
(reference 11).

Figure 5. A plot of the two largest principal components developed from the 48 GC peaks of the 133
SPE gas chromatograms. Each gas chromatogram is represented by a point in the principal compo-
nent map: (1) JP-4, (2) Jet-A, (3) JP-7, (4) JPTS, (5) JP-5, and (6) JP-8. Reprinted from reference 12 with
the kind permission of Elsevier.
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matograms of kerosene-based fuels (e.g., Jet-A, JP-5, and JPTS)
were more difficult to classify than gas chromatograms of other
types of processed fuels because of the similarity in the overall
hydrocarbon composition of these fuel materials. Nevertheless,
Mayfield and Henley were able to find fingerprint patterns within
the gas chromatograms of kerosene-based fuels characteristic of
fuel type, whichmotivated us to investigate the existence of these
types of patterns in the SPE data set.

A GA for pattern recognition was used in the study to uncover
features characteristic of the chromatographic profile of each
fuel class. The GA identified features by sampling key feature
subsets, scoring their principal component plots, and tracking
those samples or classes that were most difficult to classify. The
boosting routine used this information to steer the population to
an optimal solution. After 100 generations, the GA identified two

standardized retention time windows (features 9 and 23) whose
plot showed clustering of the fuel samples according to fuel type
(see Figure 6). This suggested that information about fuel type
was contained within the gas chromatograms of the water-sol-
uble components. The ease of classifying these highly complex
mixtures by selective fractionation becomes apparent when
taking into account the fact that an equilibration time of only
3 h is necessary to obtain a reproducible profile of the water-sol-
uble components of a jet fuel (18).

Figure 7 shows a plot of the scores of the two largest principal
components of the 73 GC peaks obtained from the 108 SPME gas
chromatograms. The map of the two largest principal compo-
nents of the data accounted for 60% of the total cumulative vari-
ance. Each gas chromatogram was represented by a point in the
principal component map. JPTS and JP-5 were well-separated

from each other and from the gas chro-
matograms of Jet-A and JP-8 in the principal
component map, whereas the gas chro-
matograms of the Jet-A and JP-8 fuel samples
overlapped. The fact that SPME did a better job at
discriminating between Jet-A and JP-5 than SPE
can be attributed to the fact that headspace SPME
is better than SPE at extracting the water-soluble
components of the fuels (9). SPME was also more
convenient than SPE for sampling organics from
aqueous solutions and was the method of choice
for those situations in which the analysis was lim-
ited to the headspace of the sample.

Using the pattern recognitionGA, feature selec-
tion was performed to identify peaks that could
differentiate the gas chromatograms of JP-8 fuels
from Jet-A fuels. This particular pattern recogni-
tion problem was deemed important because of
the change from JP-4 to JP-8 as the principal U.S.
Air Force fuel. Figure 8 shows a score plot of the
two largest principal components developed from
13 GC peaks identified by the GA. The 13 peaks
spanned the entire gas chromatogram and, iden-
tified by the pattern recognition GA, allowed the
fuels to cluster by type in a plot of the two largest
principal components of the data.

In order to test the predictive ability of the 13
GC peaks identified by the pattern recognition
GA, wewould need an external prediction set con-
sisting of gas chromatograms of the microex-
tracts of the water-soluble components of the
weathered jet fuels. Unfortunately, GC profiles of
the water-soluble components of weathered jet
fuels were not obtained when this study was per-
formed. Because the two largest principal compo-
nents captured the bulk of the variance of the
feature subset in question, it was unlikely that
chance classifications could explain the clus-
tering of the fuel samples by type in a map of the
two largest principal components of the 13 GC
peaks. Monte Carlo simulation studies performed
in our laboratory to address this issue indicated
that the likelihood of obtaining such a principal

Figure 6. A plot of standardized retention time window 9 versus standardized retention time window
24 for the 133 SPE gas chromatograms. Each gas chromatogram is represented by a point in the prin-
cipal component map: (1) JP-4, (2) Jet-A, (3) JP-7, (4) JPTS, (5) JP-5, and (6) JP-8. The clustering of the
fuel samples according to fuel type in the feature map is evident. Reprinted from reference 12 with
the kind permission of Elsevier.

Figure 7. A plot of the two largest principal components developed from the 73 GC peaks of the 108
SPME gas chromatograms. Each gas chromatogram is represented by a point in the principal compo-
nent map: (1) Jet-A, (2) JPTS, (3) JP-5, and (4) JP-8. Reprinted from reference 12 with the kind permis-
sion of Elsevier.
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component plot (as shown in Figure 8) resulting from chance is
essentially zero. Because the neat jet fuel samples chosen for this
study constituted a representative sampling of these fuels, we
believe that legitimate chemical differences in the water-soluble
components of the fuels characteristic of type exist that can be
exploited by the methodology discussed in this study.

Conclusion

The clustering of the fuel samples according to fuel type in the
principal component plots generated from the SPE and SPME
data sets (see Figures 6 and 8) suggests that fuel-spill identifica-
tion rotted on the water-soluble components of jet fuels is fea-
sible for both kerosene and nonkerosene-based jet fuels. Thus, it
is logical to consider the direct implementation of the selective
fractionation scheme described in this study as an integral com-
ponent of the methodology used by the United States Air Force
to identify fuels recovered from subsurface environments.
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Figure 8. A plot of the two largest principal components developed from the 13 GC peaks identified
by the pattern recognition. Each gas chromatogram is represented by a point in the principal compo-
nent map: (1) Jet-A, (2) JPTS, (3) JP-5, and (4) JP-8. The clustering of the samples according to fuel type
in the principal component map is evident.


